|
D'origine russe, Zariski fit ses études à Kiev
(Russie). Il les compléta en Italie (1921) auprès de Enriques
et de Castelnuovo qui dirigea sa thèse à
l'université de Rome (1925). Sollicité par son ami et ancien compatriote
Solomon Lefschetz,
Zariski s'installera finalement
aux États-Unis (1927) où il obtiendra un premier poste à la Johns Hopkins
university de Baltimore (Maryland). En 1947, une chaire
lui est offerte en la célèbre université de Harvard, un poste qu'il
conservera tout au long de sa brillante carrière.
Les travaux de Zariski portèrent exclusivement sur la géométrie algébrique qu'il développe avec rigueur dès 1937 dans une théorie abstraite des invariants où l'intuition géométrique cède la place aux concepts algébriques de l'algèbre commutative avec l'apport des groupes et variétés algébriques (» réf.4) et de la théorie des valuations (» réf.6) dont il fut à l'origine. Considéré comme le fondateur de la géométrie algébrique moderne, il reçut le prix Cole (1944) de l'American Mathematical Society en récompense de ces travaux novateurs.
Valeur absolue et valuation : » Cas de l'anneau des nombres p-adiques : »
Zariski s'attaqua (1954) au 14è problème de Hilbert relatif à l'existence d'un système fini de générateurs d'une algèbre de fonctions rationnelles sur un corps abstrait. Il donne une interprétation du problème par le biais de la géométrie projective sur laquelle s'appuiera le mathématicien japonais Masayoshi Nagata (1927-) pour répondre négativement à ce problème (1959).
» Mumford , Max Noether , Lefschetz , Zariski , Hodge , Kodaira , Voisin, ...
Topologie de Zariski :
K désignant un corps algébriquement clos K, il s'agit d'une topologie adaptée à l'étude des variétés affines de Kn pour laquelle les parties fermées sont ses ensembles algébriques, points de Kn définis par un système d'équations polynomiales à coefficients dans K).
La réunion de deux ensembles algébriques est clairement algébrique et, par récurrence, toute réunion finie d'ensembles algébriques est algébrique.
L'intersection d'une famille d'ensembles algébriques (finie ou non) est algébrique car l'ensemble des polynômes qui la définissent est un idéal de K[x1, x2, ..., xn] et cet idéal est de type fini.
Théorème (ou lemme) de Zariski :
Toute algèbre de type fini sur un corps K qui est elle-même un corps est une extension finie de K.
Ce théorème voit son usage dans la preuve "moderne" du théorème des zéros de Hilbert (Nullstellensatz) :
J désignant un idéal propre de K[x1, x2,
..., xn] et L une clôture algébrique de
K, il existe au moins un élément
α de Ln tel que pour tout polynôme p de J, p(α) = 0.
» On pourra consulter à ce sujet les références 4, 5a et 5b indiquées in fine.
L'université de Harvard et le MIT (Massachusetts Institute of Technology) :
La ville américaine de Cambridge fut fondée par les colons anglais vers 1630 sous le nom de Newtown (ville nouvelle) et située dans le Massachusetts, état du nord-est américain faisant partie de la Nouvelle-Angleterre. L'université d'Harvard, initialement college, y fut fondée en 1636, elle est la plus ancienne université américaine. Elle doit son nom au moine protestant John Harvard, d'origine anglaise qui légua (1638) sa fortune et sa bibliothèque à la toute nouvelle université. La ville héberge le non moins célèbre MIT (Massachusetts Institute of Technology).
i On ne doit pas confondre cette ville américaine avec la ville homonyme anglaise de Cambridge dont la très réputée université fut fondée au tout début du 13è siècle (en 1209). Mais, selon Wikipédia, le lien entre les deux villes est réel : le changement de nom de la ville (1638) fut décidé pour exprimer la qualité de l'enseignement de la colonie.
➔ Pour en savoir plus :