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Abstract

Let Xi, i = 1 . . . n be a sequence of positive i. i. d. random variables. Define

Rn := E
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
.

Let φ(s) = Ee−sX . We give an explicit representation of Rn in terms of φ and with the help
of the Karamata theory of functions of regular variation we study the asymptotic behaviour
of Rn for large n.

Résumé

Soient Xi, i = 1 . . . n une suite de variables aléatoires positives équidistribuées,

Rn := E
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
,

et φ(s) = Ee−sX . Nous donnons une expression explicite de Rn à l’aide de φ et grâce à
la théorie de Karamata des fonctions à variation régulière nous décrivons le comportement
asymptotique de Rn pour les grandes valeurs de n.





1. Introduction. —
Let X1, X2 . . . Xn . . . be a sequence of identically distributed independent non-negative random

variables satisfying P (X1 = 0) < 1. Let

Rn := E
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
with the convention

0
0

= 0.

The asymptotic behaviour of Rn has been investigated in [CH] and [MO].
In section 2 an explicit formula is established representing Rn in terms of the Laplace transform

ϕ of the Xi : ϕ(s) := Ee−sX1 =
∫∞
0

e−sxdF (x), s ≥ 0, where F denotes the distribution function
of X1.

In section 3 the power of the representation formula is illustrated by giving elementary proofs
of known results.

The representation formula allows us both to provide new and simpler proofs of known results
and to extend them. For instance theorem (5.4) gives a new characterisation of laws which are
in the domain of attraction of a stable law of parameter α ∈ (0, 1). Our method relies on the
theory of functions of regular variation for which [BGT] is our main reference. In the appendix we
summarize the results we use from [BGT] ; given these, this article is completely self contained.

In sections 4 and 5 several theorems are stated concerning the asymptotic behaviour of Rn. In
section 4 these are of a general nature, section 5 gives a complete description of the behaviour
of Rn when the Xi are the domain of attraction of a stable law. Theorems 4.1 and 4.2 are slight
improvements of theorem 1 of [MO], theorems 5.1 and 5.2 are the theorem 2. of [MO], theorem
5.5 is theorem 1 of [CH] and theorem 4 of [MO], the first part of theorem 5.4 is the first part of
theorem 4 of [CH],whose proof is omitted, and the second part of theorem 5.4 and theorem 5.6 are
new. Most of these results were stated without proof in [FJ] though there is a small incongruity
in their theorem 1.

2. Representation formulae. —
Let X and Y be non-negative random variables with Laplace transforms ϕX(s), ϕY (s) and

joint Laplace transform ϕX,Y (s, t). The formula
1
yα

=
1

(α)

∫ ∞

0

e−sysα−1ds , α > 0,

and Fubini’s theorem yields

E
1

Y α
=

1
(α)

∫ ∞

0

sα−1ϕY (s)ds ≥ 0,

and for k1 and k2 non-negative integers :

E
Xk1Y k2

(X + Y )α
= (−1)k1+k2

1
(α)

∫ ∞

0

sα−1 ∂k1+k2

∂k1s ∂k2t
ϕX,Y (s, t)|s=tds.

In the special case when X1, . . . , Xn are independent random variables this gives

E
Xk

1

(X1 + . . . + Xn)α
=

(−1)k

(α)

∫ ∞

0

sα−1ϕ
(k)
X1

(s)
n∏
2

ϕXi
(s)ds, α > 0,

and finally, when they have the same distribution, this yields by symmetry the representation
formulae :

E
Xk

1 + . . . + Xk
n

(X1 + . . . + Xn)α
= n

(−1)k

(α)

∫ ∞

0

sα−1ϕ
(k)
X1

(s)ϕn−1
X1

(s)ds ≤ ∞

Rn = E
X2

1 + . . . + X2
n

(X1 + . . . + Xn)2
= n

∫ ∞

0

sϕ
′′

X1
(s)ϕn−1

X1
(s)ds. (2.1)

This last formula is relevant for our problem.
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3. Some elementary results. —
Let us return to the initial situation in which the Xi are i. i. d. non negative r. v. . There

common Laplace transform is denoted by ϕ and the starting point of most of the proofs is the
above representation formula (2.1). Proofs of the following lemmas are easy and are left to the
reader. Let

µ := EX1 if EX1 < ∞, d(s) :=
1− ϕ(s)

s
·

Lemma 3.1 2. — If E(X2
1 ) < ∞, then limn↑∞ nRn = E(X2

1 )
[E(X1)]2

.

PROOF. It suffices, from lemma 3.5, to establish the result for the expression :

nAn = n2

∫ ε

0

sϕ
′′
(s)ϕn−1(s)ds =

∫ nε

0

tϕ
′′
(
t

n
)ϕn−1(

t

n
)dt.

With the help of Lemma 3.4, the integrand is seen to converge to tE(X2
1 )e−µt. Using Lemma

3.3 and the monotonocity of ϕ and ϕ′, the result follows by Lebesgue’s dominated convergence
theorem.

Theorem 2. — If EX1 < ∞, then limn↑∞Rn = 0.

PROOF. It suffices,from lemma 3.5, to establish the result for An. Lemma 3.1 implies that the
integrand converges to 0. The result follows by Lebesgue’s dominated convergence theorem since
the assumption implies that ϕ

′′
(s) is integrable and with the help of Lemma 3.3, the following

upper bound is easily obtained, for s ≤ s0

nsϕn−1(s) ≤ nsϕn(s)
ϕ(ε)

≤ −nsϕ′(s)ensϕ′(s)

−ϕ(ε)ϕ′(ε)
≤ e−1

−ϕ(ε)ϕ′(ε)
.

4. Asymptotic behaviour of Rn : general results. —
The next result is a slightly more precise version of Theorem 1 of [MO] :

Theorem 2. —

lim sup
n→∞

Rn

1
n

∫ n

0
x[1− F (x)]dx

≤


2 if 1 < EX1 ≤ ∞

2
µ2

if µ := EX1 ≤ 1 .

PROOF. It suffices from lemma 3.5 to establish the results for An. That ϕ is decreasing implies

An ≤
n

ϕ(ε)

∫ ε

0

sϕ
′′
(s)ϕn(s)ds,

hence from lemma 3.3

An ≤
n

ϕ(ε)

∫ ε

0

sϕ
′′
(s)e−nsd(ε)ds

≤ n

ϕ(ε)

∫ ∞

0

x2dF (x)
∫ ∞

0

se−s(x+nd(ε))ds =
1

ϕ(ε)
(Dn + En),

2



where

Dn = n

∫ n

0

(
x

x + nd(ε)

)2

dF (x), En = n

∫ ∞

n

(
x

x + nd(ε)

)2

dF (x).

a) En ≤ n
∫∞

n
dF (x) = n[1− F (n)],

b) Dn ≤
n

[nd(ε)]2

∫ n

0

x2dF (x) ≤ −n

[nd(ε)]2

∫ n

0

x2d[1− F (x)]

=
2

nd(ε)2

∫ n

0

x[1− F (x)]dx− n[1− F (n)]
d2(ε)

,

hence

Dn + En ≤
2

nd2(ε)

∫ n

0

x[1− F (x)]dx + (1− 1
d2(ε)

)n[1− F (n)].

If µ ≤ 1 then d(ε) ≤ µ ≤ 1 for every ε > 0, and we get

Dn + En ≤
2

nd2(ε)

∫ n

0

x[1− F (x)]dx,

which gives the result since, as ε goes to 0, d(ε) goes to µ and ϕ(ε) goes to 1.
If ∞ ≥ EX1 > 1, there exists ε > 0 such that d(ε) > 1 , hence if we observe that

n[1− F (n)] ≤ 2
n

∫ n

0

x[1− F (x)]dx,

we get

Dn + En ≤
2
n

∫ n

0

x[1− F (x)]dx,

which gives the result.

Theorem 2. — If µ = EX1 < ∞, then

2
(1 + µ)2

≤ lim inf
n→∞

Rn

1
n

∫ n

0
x[1− F (x)]dx

·

PROOF. As in the proof of Theorem 3.1 it suffices to establish the inequality for the expression

An := n

∫ ε

0

sϕ
′′
(s)ϕn−1(s)ds ≥ n

∫ ε

0

sϕ
′′
(s)ϕn(s)ds.

From lemma 3.4, for any δ > 0 one can choose ε > 0 such that ϕ(s) ≥ e−s(µ+δ) for s < ε. Hence

An ≥ n

∫ ε

0

sϕ
′′
(s)e−ns(µ+δ)ds = n

∫ ∞

0

x2dF (x)
(∫ ε

0

se−s[x+n(µ+δ)]ds

)
= n

∫ ∞

0

( x

x + n(µ + δ)

)2

dF (x)
∫ ε[x+n(µ+δ)]

0

ye−ydy ∼ n

∫ ∞

0

(
x

x + n(µ + δ)

)2

dF (x);

3



breaking the integral from 0 to n into the part Dn and from n to ∞ into the part En one obtains :

a)En := n

∫ ∞

n

( x

x + n(µ + δ)

)2

dF (x)

≥ n

∫ ∞

n

(
1− n(µ + δ)

n + n(µ + δ)

)2

dF (x) =
1

[1 + µ + δ]2
n[1− F (n)];

b) Dn := n

∫ n

0

( x

x + n(µ + δ)

)2

dF (x) ≥ n

[n + n(µ + δ)]2

∫ n

0

x2dF (x);

integration by parts yields :

Dn ≥
2

(1 + µ + δ)2
1
n

∫ n

0

x[1− F (x)]dx − 1
(1 + µ + δ)2

n [1− F (n)].

Finally, An is ultimately bounded below by Dn + En :

Dn + En ≥
2

(1 + µ + δ)2
1
n

∫ n

0

x[1− F (x)]dx,

from which the result follows since δ > 0 can be chosen as small as we want.

5. Asymptotic behaviour of Rn : special results.. —
References to Th. A. i refer to the appendix (section 6).

Theorem 2. — If X1 belongs to the domain of attraction of a stable law of parameter
α, 1 ≤ α < 2 and µ = EX1 < ∞, then :

limn→∞
Rn

n[1− F (n)]
=

(2− α) (1 + α)
µα

·

PROOF. It suffices,from lemma 3.5, to establish the results for the expression :

Bn =
1

1− F (n)

∫ ε

0

sϕ
′′
(s)ϕn−1(s)ds.

The change of variable s = t
n yields

Bn =
1

1− F (n)
1
n2

∫ nε

0

tϕ
′′
(
t

n
)ϕn−1(

t

n
)dt.

Hence with the notations of Th. A.6 :

Bn = α(2− α)
l(n)

nα[1− F (n)]︸ ︷︷ ︸
→1

∫ nε

0

tα−1 l(n
t )

l(n)︸︷︷︸
→1

ϕ
′′
( t

n )
α(2− α)(n

t )2−αl(n
t )︸ ︷︷ ︸

→1

ϕn−1(
t

n
)︸ ︷︷ ︸

→e−µt

dt

=
∫ ∞

0

hn(t)dt,

which defines hn. From Th. A.6 we have, for every t > 0

lim
n→∞

hn(t) = α(2− α)tα−1e−µt.

Using Potter’s theorem (Th A.1), Th. A.6 and lemma 3.3, the passage to the limit is justified by
Lebesgue’s dominated convergence theorem. Finally∫ ∞

0

hn(t)dt → α(2− α)
∫ ∞

0

tα−1e−µtdt =
(2− α)(1 + α)

µα
.
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Theorem 2. — If X1 belongs to the domain of attraction of the normal law, then

limn→∞
Rn

1
n

∫ n

0
x[1− F (x)]dx

=
2
µ2
·

PROOF. It suffices,from lemma 5, to establish the result for the expression :

Cn =
1

1
n

∫ n

0
x[1− F (x)]dx

n

∫ ε

0

sϕ
′′
(s)ϕn−1(s)ds.

The change of variable s = t
n gives

Cn =
1∫ n

0
x[1− F (x)]dx

∫ nε

0

tϕ
′′
(
t

n
)ϕn−1(

t

n
)dt.

Using the notation of Th. A.5 :

Cn =
l(n)∫ n

0
x[1− F (x)]dx

∫ nε

0

t
l(n

t )
l(n)︸︷︷︸
→1

ϕ
′′
( t

n )
l(n

t )︸ ︷︷ ︸
→1

ϕn−1(
t

n
)︸ ︷︷ ︸

→e−µt

dt =
∫ ∞

0

hn(t)dt,

which defines hn. Integrating by parts and using part a) of Theorem A.5. gives :∫ n

0

x[1− F (x)]dx =
[1− F (n)]n2

2
+

l(n)
2

.

Therefore
1

l(n)

∫ n

0

x[1− F (x)]dx =
1
2

n2[1− F (n)]
l(n)

+
1
2
,

which tends to 1
2 as n →∞, by Theorem A.5. As in the proof of the previous theorem, the result

follows from Lebesgue’s dominated convergence theorem :
∫∞
0

hn(t)dt → 2
∫∞
0

te−µtdt = 2
µ2 .

Theorems 5.1 and 5.2 are linked. For if the conditions of 5.1 are satisfied, then

n2(1− F (n))∫ n

0
x(1− F (x))dx

=
{∫ 1

0

y
1− F (ny)
1− F (n)

dy

}−1

→ 2− α.

Hence we obtain the following corollary :

Corollary 2. — If X1 belongs to the domain of attraction of a stable law of parameter
α, 1 ≤ α ≤ 2 and µ = EX1 < ∞ then,

limn→∞
Rn

1
n

∫ n

0
x[1− F (x)]dx

=
(3− α) (1 + α)

µα
·

The following lemma will be used in the proofs of next theorems.
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Lemma 2. — If X1 belongs to the domain of attraction of a stable law of parameter α, 0 < α ≤ 1,
or if X1 is relatively stable then

i) There exists a sequence an such that ϕn( s
an

) → e−sα

as n →∞, with α = 1 if X1 is relatively
stable.

ii) There exists δ with 0 < δ < 1 and ε > 0 such that :

ϕn

(
t

an

)
≤ e−Atδ

, 0 ≤ t ≤ anε, an >
1
ε

PROOF. Consider first the case 0 < α < 1. The an are chosen as in the comments which follow
Th A.6 ; by that theorem one has : 1 − F (x) ∼ 1

(1−α)
l(x)
xα ,with l slowly varying, which yields by

Th. A.4. b) 1− ϕ(s) = sαl(1
s ). Then d(s) = 1−ϕ(s)

s = sα−1l(1
s ) and lemma 3.3 yields :

ϕ(s) ≤ e−sd(s) ≤ e−sαl( 1
s ).

Therefore :

ϕ(
s

an
) ≤ e

−sα l( an
s

)

aα
n , ϕn(

s

an
) ≤ e

−sα l( an
s

)
l(an)

nl(an)
aα

n .

Now by (6.3 ), nl(an)
aα

n
→ 1. The result follows by applying Th. A.1. (Potter’s theorem) to the ratio

l(an)
l( an

s )
, with ε = 1

X .
The case α = 1 is treated in the same way by invoking Th. A.8 instead of Th. A.6. and A.4.

Observe that l̃ plays the role of l.
Finally when X1 is relatively stable, the result follows from Th. A.9.

Theorem 2. — If X1 belongs to the domain of attraction of a stable law of parameter
α, 0 < α < 1, then

limn→∞ Rn = 1− α. (∗)
Conversely if (∗) holds then X1 belongs to the domain of attraction of a stable law of parameter

α, 0 < α < 1.

PROOF. As before, to study the asymptotic behaviour of Rn it suffices,from lemma 3.5, to
establish the results for An.

From the remark following Th. A.6, the assumption implies the existence of a sequence

an, an > 0 such that ϕn( s
an

) → e−sα

as n → ∞. After the change of variable s =
t

an
, we

get

An =
n

a2
n

∫ anε

0

tϕ
′′
(

t

an
)ϕn−1(

t

an
)dt.

Equations (6.4) and (6.5) of Theorem A.7 lead to :

An =
n

a2
n

∫ anε

0

tα(1− α)(
an

t
)2−αl(

an

t
)

ϕ
′′
(

t

an
)

α(1− α)(
an

t
)2−αl(

an

t
)
ϕn−1(

t

an
)dt

=
n

aα
n

l(an)︸ ︷︷ ︸
→1

α(1− α)
∫ anε

0

tα−1
l(

an

t
)

l(an)︸ ︷︷ ︸
→1

ϕ
′′
(

t

an
)

α(1− α)(
an

t
)2−α l(

an

t
)︸ ︷︷ ︸

→1

ϕn−1(
t

an
)︸ ︷︷ ︸

→e−tα

dt

=
∫ ∞

0

hn(t),

6



which defines hn. Formula (6.3) and Th. A.7 yields :

lim
n→∞

hn(t) = α(1− α)tα−1e−tα

.

Let ε be chosen as in lemma 5.3 ; with the help of that lemma, the result follows from Lebesgue’s
dominated convergence theorem.

To prove the converse, let us assume that Rn converges to c, 0 < c < 1 as n goes to ∞. For
any integer m we have

Rnm+1 = (nm + 1)
∫ ∞

0

sϕ
′′
(s)ϕnm(s)ds = (nm + 1)

∫ ∞

0

ϕnm(s)d(s),

where (s) =
∫ s

0
tϕ

′′
(t)dt. The change of variable ϕ(s) = 1− u

n , (s = ϕ−1(1− u
n )), yields

Rnm+1 = (nm + 1)
∫ n

0

(1− u

n
)nmd

(
ϕ−1(1− u

n
)
)

.

Define
µn(u) = n

(
ϕ−1(1− u

n
)
)

,

which are measures on R+ of mass n. Since µn(u) ≤ u weak compactness implies the existence
of a subsequence ni →∞ such that µni

(u) → µ(u) weakly.

Rnm+1 =
(nm + 1)

n

∫ n

0

(1− u

n
)nmdµn(u),

taking the limit along the subsequence ni yields

c = m

∫ ∞

0

e−umdµ(u).

From ∫ ∞

0

e−umdµ(u) =
c

m
,m = 1.2 . . . ,

and the change of variable x = e−u it follows by Weierstrass’theorem that µ(u) = cu,
independently of the subsequence. Hence µn(u) → cu weakly or

µn(u) = n
(
ϕ−1(1− u

n
)
)
→ cuor (s) ∼ c[1− ϕ(s)]as s → 0.

Thus ∫ s

0
tϕ

′′
(t)dt

1− ϕ(s)
→ c or

∫ s

0

tϕ
′′
(t)dt + c

∫ s

0

ϕ
′
(t)dt = o(1− ϕ(s)).

Call the left hand side of this last equation V (s) :

V (s) :=
∫ s

0

tϕ′′(t)dt + c

∫ s

0

ϕ′(t)dt =
∫ s

0

t1−c[tcϕ′(t)]′dt

= sϕ′(s)− (1− c)[ϕ(s)− 1],whence
V (s)

1− ϕ(s)
=

sϕ′(s)
1− ϕ(s)

+ 1− c = o(1), ass → 0.

This yields − sϕ′(s)
1−ϕ(s) → 1− c as s → 0. Put δ(s) := 1− c + sϕ′(s)

1−ϕ(s), to obtain∫ 1

t

δ(s)
s

ds = −(1− c) log t + C + log[1− ϕ(t)]

or 1 − ϕ(t) = t−c+1l(1
t ) where l(u) = exp{−C +

∫ u

1
ε(x)

x dx} and ε(x) = δ( 1
x ). From the

representation theorem (theorem A.2), it follows that l is a slowly varying function and then
theorems A.5. and A.7. imply that F is attracted to a stable law of parameter 1− c.
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Theorem 2. — The following three statements are equivalent :

(1) F is relatively stable,

(2)
∫ x

0

[1− F (y)]dy is a slowly varying function ,

(3) limn→∞ Rn = 0.

PROOF. (1) and (2) are equivalent by Th. A.9. Assume (2) ; as usual it suffices to establish
the results for An.

Define l(x) :=
∫ x

0
(1− F (y)) dy. After an integration by parts and a change of variables, one

obtains :
ϕ
′′
(s) = −

∫ ∞

0

e−sxx2d(1− F ) =
1
s

∫ ∞

0

l(
y

s
)e−y(2− 4y + y2)dy.

Replacing ϕ
′′
(s) by this value in the expression of An and using Fubini’s theorem, one obtains :

An =
∫ ∞

0

e−y(2− 4y + y2)

[
n

∫ ε

0

ϕn−1(s)l(
y

s
)ds

]
dy.

After the change of variables

s =
t

an
where

nl(an)
an

∼ 1 with ϕn(
t

an
) → e−t,

An =
∫ ∞

0

e−y(2− 4y + y2)
[

n

an

∫ anε

0

ϕn−1(
t

an
)l(

yan

t
)dt

]
dy

=
∫ ∞

0

e−y(2− 4y + y2)

[
nl(an)

an︸ ︷︷ ︸
→1

∫ anε

0

ϕn−1(
t

an
)︸ ︷︷ ︸

→e−t

l(yan

t )
l(an)︸ ︷︷ ︸
→1

dt

]
dy.

Let ε be chosen as in lemma 5.3 ; that lemma and the relation∫ ∞

0

e−y(2− 4y + y2)dy = 0

then implies that An → 0 as n →∞ by Lebesgue’s dominated convergence theorem.
To prove the converse proceed as in theorem 5.3 with c = 0 to obtain 1−ϕ(t) = tl(1

t ) with l a
slowly varying function ; it follows from Theorem A.4. ii) that

∫ x

0
(1− F (x)) dx is a slowly varying

function.

The last case to be considered is the one where X1 belongs to the domain of attraction of a
stable law of parameter α, with α = 1 and EX1 = ∞; then from Theorems A.6 and A.8 one has :

1− F (x) ∼ l(x)
x , x →∞ and moreover one can choose a sequence {an}n≥1, an > 0 such that

[ϕ( t
an

)]n → e−t , n →∞ and l̃(an)
an

∼ 1
n where l̃(x) =

∫ x l(t)
t dt.

8



Theorem 2. — If X1 belongs to the domain of attraction of a stable law of parameter α, with
α = 1 and EX1 = ∞ then

limn→∞
l̃(an)
l(an)

Rn = 1,

where the symbols l, l̃, an have been define above.

PROOF. As usual it suffices to establish the result for the expression : An.

After the change of variable s =
t

an
we get

An =
n

a2
n

∫ anε

0

tϕ
′′
(

t

an
)ϕn−1(

t

an
)dt.

Using the notation of Th. A.8 :

An =
l(an)

l̃(an)

nl̃(an)
an︸ ︷︷ ︸
→1

∫ nε

0

l(an

t )
l(an)︸ ︷︷ ︸
→1

ϕ
′′
( t

an
)

an

t l(an

t )︸ ︷︷ ︸
→1

ϕn−1(
t

an
)︸ ︷︷ ︸

→e−t

dt =
l(an)

l̃(an)

∫ ∞

0

hn(t)dt,

which defines hn and as in the previous theorems, with the help of lemma 5.3 the result follows
from Lebesgue’s dominated convergence theorem.

Remark 2. — In the above theorem since l̃(an)
l(an) →∞ one has the rate of convergence of Rn to

0, as n →∞.

We thank J. Kuelbs for asking one of us a question which led to the following remark :

Remark 2. — If X1 belongs to the domain of partial attraction of a stable law of parameter
α, where 0 < α < 1, then, along a subsequence nr, limnr→∞Rn = 1 − α. Hence if X1 belongs to
Doeblin’s “ universal law” the set of all limit points of Rn is the closed interval [0, 1].

Appendix. Slowly varying functions and domains of attraction. — Let l be a positive
measurable function satisfying

l(λx)
l(x)

→ 1 (x →∞) ∀λ > 0 (6.1)

then l is said to be slowly varying. If this is the case one can show that the convergence in (1)
is uniform in each compact-λ set in (0,∞).

Theorem 2. — (i) If l is slowly varying then for any chosen constants A > 1, δ > 0 there
exists X = X(A, δ) such that

l(y)
l(x)

≤ A max
{

(
y

x
)δ, (

y

x
)−δ

}
(x ≥ X, y ≥ X).

(ii) If, further, l is bounded away from 0 and ∞ on every compact subset of [0,∞), then for
every δ > 0 there exists A′ = A′(δ) > 1 such that

l(y)
l(x)

≤ A′max
{

(
y

x
)δ, (

y

x
)−δ

}
(x > 0, y > 0).
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Theorem 2. — The function l is slowly varying if and only if it may be written in the form

l(x) = c(x) exp{
∫ x

1

ε(u)
u

du},

where c(x) → c ∈ (0,∞), and ε(x) → 0 as x →∞.

In the sequel F (x) will denote a distribution function whose support is [0,∞[, F̂ (s) = ϕ(s) =∫∞
0

e−sxdF (x), s ≥ 0, its Laplace transform, V (x) =
∫ x

0
t2dF (t), x ≥ 0, the truncated variance of

F (·) and

V̂ (s) = ϕ
′′
(s) =

∫ ∞

0

e−sxdV (x) =
∫ ∞

0

e−sxx2dF (x), s ≥ 0.

Theorem 2. —
(i) If l is slowly varying, 0 ≤ α < 2 then the following two statements are equivalent :
a) V (x) ∼ x2−αl(x) , x →∞,
b) 1− F (x) ∼ 2−α

α
l(x)
xα , x →∞.

(ii) If l is slowly varying, (α = 2), then the following two statements are equivalent :
a) V (x) ∼ l(x), x →∞,
b) x2[1−F (x)]

V (x) → 0, x →∞.

Theorem 2. — (i) If l is slowly varying 0 ≤ α < 1 then the following two statements are
equivalent :

a) 1− F (x) ∼ 1
(1−α)

l(x)
xα , x →∞

b) 1− F̂ (s) ∼ sαl(1
s ), s → 0.

(ii) The following two statements are equivalent (α = 1) :
a)

∫ x

0
[1− F (x)] ∼ l(x), x →∞

b) 1− F̂ (s) ∼ sl(1
s ), s → 0.

The following two theorems on domains of attractions are an adaptation of Th. 8.3.1. of [BGT]
when the support of F is R+ :

Theorem 2. — the following four statements are equivalent :
a) F is attracted to a normal law (α = 2),
b) V (x) = l(x) where l(x) is slowly varying,
c) x2[1−F (x)]

V (x) → 0 as x →∞,

d) V̂ (s) = ϕ
′′
(s) ∼ l(1

s ) as s → 0.

Theorem 2. — the following four statements are equivalent :
a) F is attracted to a stable law (0 < α < 2),
b) 1− F (x) ∼ l(x)

xα where l(x) is slowly varying ,
c) V (x) ∼ α

2−αx2−αl(x) as x →∞,
d) V̂ (s) = ϕ

′′
(s) ∼ α(2− α) 1

s2−α l(1
s ) as s → 0.

We recall from [BGT] section (8.3.5. ) that the stable laws with Laplace transform e−sα

, o <
α < 1, are (to within scale) the only ones concentrated on [0,∞[. Consider their domain of
attraction and observe that no centering is required : F is in their domain of attraction if and
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only if there exists a sequence an, with an > 0 and an

an+1
→ 1 such that ϕn( s

an
) → e−sα

as n →∞.
Moreover one has

1− F (x) ∼ 1
(1− α)

l(x)
xα

, for some slowly varying functionl, (6.2)

and the norming constants are determined from
nl(an)

aα
n

→ 1. (6.3)

Theorem 2. — Equation (6.2) is equivalent to each of the following :

V (x) ∼ α

(2− α)(1− α)
x2−αl(x), x →∞. (6.4)

V̂ (s) = ϕ
′′
(s) ∼ α(1− α)(

1
s
)2−αl(

1
s
), s → 0. (6.5)

When α = 1 the situation is slightly more technical : recall from [BGT] that the class l of
l−index equals to 1 is the class of functions f such that for λ > 0,

limx→∞
{f(λx)− f(x)}

l(x)
= log λ.

If l(x) is slowly varying, then

l̃(x) =
∫ x l(t)

t
dt

is slowly varying and
l̃(x)
l(x)

→∞ asx →∞.

Theorem 2. — If l is slowly varying then the following four statements are equivalent :

a) 1− F (x) ∼ l(x)
x

, x →∞

b) ϕ
′′
(s) ∼ 1

s
l(

1
s
), s → 0

c)
1− ϕ(s)

s
∈ l of l − index equals to 1

d)
1− ϕ(s)

s
∼

∫ 1
s

1

l[t]
t

dt = l̃(
1
s
), s → 0.

Moreover if F is in the domain of attraction of a stable law of parameter 1, one can choose a
sequence {an}n≥1, an > 0 such that

l̃(an)
an

∼ 1
n

so that [ϕ(
t

an
)]n → e−t , n →∞

PROOF the equivalence of a) and b) is Th. A.6 for α = 1. This is equivalent to c) by the remark
in [BGT] p.335 and the last two statements are equivalent by Th. 3.6.6 in [BGT] p.158. Finally
the last statement follows from Th. 8.8.1 of [BGT] pp.373-74 since one can choose a sequence an

such that l̃(an)
an

∼ 1
n , this yield the conclusion.

Recall that a law F is relatively stable if there exists norming constants an such that
lim ϕn( s

an
) = e−s. The following theorem is an adaptation of Theorem 8.8.1. and formula (8.8.1)

of [BGT].
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Theorem 2. — The following three statements are equivalent :
i) F is relatively stable,
ii)

∫ x

0
(1− F (y))dy ∼ l(x), x →∞ where l is slowly varying,

iii) 1− ϕ(s) ∼ sl(1
s ), s → 0 where l is slowly varying.

Moreover if F is relatively stable the norming constants an satisfy :

l(an)
an

∼ 1
n

REFERENCES

[BGT] N. H. BINGHAM, C. M. GOLDIE and J. L. TEUGELS. — Regular Variation. —
Cambridge University Press, .

[CH] H. Cohn and P. Hall. — On the Limit Behaviour of Weighted Sums of Random Variables,
Z. Warscheinlichkeitstheorie verw. Gebiete., t. 59, p. 319–331, .

[F] W. Feller. — An Introduction to Probability Theory and its Applications. — vol. II, 2nd
edn. Wiley, N. Y. , .

[FJ] A. FUCHS and A. JOFFE. — Formule exacte de l’espérance du rapport de la somme des
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