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We are now ready to state the main result of this section.

◗ Theorem 6.5 (Cauchy–Goursat theorem) Let f be analytic in a simply
connected domain D. If C is a simple closed contour that lies in D, then∫

C

f (z) dz = 0.
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We give two proofs. The first, by Augustin Cauchy, is more intuitive but
requires the additional hypothesis that f ′ is continuous.

Proof (Cauchy’s proof of Theorem 6.5.) If we suppose that f ′ is continu-
ous, then with C oriented positively we use Equation (6-16) to write∫

C

f (z) dz =
∫

C

u dx− v dy + i

∫
C

v dx+ u dy. (6-28)

If we use Green’s theorem on the real part of the right side of Equation
(6-28) (with P = u and Q = −v), we obtain∫

C

u dx− v dy =
∫∫
R

(−vx − uy) dx dy, (6-29)

where R is the region that is the interior of C. If we use Green’s theorem
on the imaginary part, we get∫

C

v dx+ u dy =
∫∫
R

(ux − vy) dx dy. (6-30)

If we use the Cauchy–Riemann equations ux = vy and uy = −vx in Equations
(6-29) and (6-30), Equation (6-28) becomes∫

C

f (z) dz =
∫∫
R

0 dx dy + i

∫∫
R

0 dx dy = 0,

and the proof is complete.

In 1883, Edward Goursat (1858–1936) produced a proof that does not require
the continuity of f ′.
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Figure 6.20 The triangular contours C and C1, C2, C3, and C4.

Proof (Goursat’s proof of Theorem 6.5) We first establish the result for a
triangular contour C with positive orientation. We then construct four pos-
itively oriented contours C1, C2, C3, and C4 that are the triangles obtained
by joining the midpoints of the sides of C, as shown in Figure 6.20.

Each contour is positively oriented, so if we sum the integrals along the
four triangular contours, the integrals along the segments interior to C cancel
out in pairs, giving

∫
C

f (z) dz =
4∑

k=1

∫
Ck

f (z) dz. (6-31)

Let C1 be selected from C1, C2, C3, and C4 so that the following holds:∣∣∣∣
∫

C

f (z) dz
∣∣∣∣ ≤ 4∑

k=1

∣∣∣∣
∫

Ck

f (z) dz
∣∣∣∣ ≤ 4

∣∣∣∣
∫

C1

f (z) dz
∣∣∣∣ .

Proceeding inductively, we carry out a similar subdivision process to obtain
a sequence of triangular contours {Cn}, where the interior of Cn+1 lies in
the interior of Cn and the following inequality holds:∣∣∣∣
∫

Cn

f (z) dz
∣∣∣∣ ≤ 4

∣∣∣∣∣
∫

Cn+1

f (z) dz

∣∣∣∣∣ , for n = 1, 2, . . . . (6-32)

We let Tn denote the closed region that consists of Cn and its interior. The
length of the sides of Cn go to zero as n→ ∞, so there exists a unique point
z0 that belongs to all the closed triangular regions {Tn}. Since D is simply
connected, z0 ∈ D, so f is analytic at the point z0. Thus, there exists a
function η (z) such that

f (z) = f (z0) + f ′ (z0) (z − z0) + η (z) (z − z0) , (6-33)

where lim
z→z0

η (z) = 0.
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Figure 6.21 The contour Cn that lies in the neighborhood |z − z0| < δ.

Using Equation (6-33) and integrating f along Cn, we get∫
Cn

f (z) dz =
∫

Cn

f (z0) dz +
∫

Cn

f ′ (z0) (z − z0) dz

+
∫

Cn

η (z) (z − z0) dz

= [ f (z0) − f ′ (z0) z0]
∫

Cn

1 dz + f ′ (z0)
∫

Cn

z dz

+
∫

Cn

η (z) (z − z0) dz

=
∫

Cn

η (z) (z − z0) dz.

Since lim
z→z0

η (z) = 0, we know that given ε > 0, we can find δ > 0 such that

|z − z0| < δ implies that |η (z)| < 2
L2
ε, (6-34)

where L is the length of the original contour C. We can now choose an integer
n so that Cn lies in the neighborhood |z − z0| < δ, as shown in Figure 6.21.
Since the distance between any point z on a triangle and a point z0 interior
to the triangle is less than half the perimeter of the triangle, it follows that

|z − z0| <
1
2
Ln, for all z on Cn,

where Ln is the length of the triangle Cn. From the preceding construction
process, it follows that

Ln =
(

1
2

)n

L and |z − z0| <
(

1
2

)n+1

L, for z on Cn. (6-35)
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We can use Equations (6-32), (6-34), and (6-35) and Theorem 6.3 to conclude∣∣∣∣
∫

C

f (z) dz
∣∣∣∣ ≤ 4n

∫
Cn

|η (z) (z − z0)| |dz|

≤ 4n

∫
Cn

2
L2
ε

(
1
2

)n+1

L |dz|

=
2nε

L

∫
Cn

|dz|

=
2nε

L

(
1
2

)n

L = ε.

Because ε was arbitrary, it follows that our theorem holds for the triangu-
lar contour C. If C is a polygonal contour, then we can add interior edges
until the interior is subdivided into a finite number of triangles. The inte-
gral around each triangle is zero, and the sum of all these integrals equals
the integral around the polygonal contour C. Therefore, our theorem also
holds for polygonal contours. The proof for an arbitrary simple closed con-
tour is established by approximating the contour “sufficiently close” with a
polygonal contour. We omit the details of this last step.


